Knowledge-based recommender systems

نویسنده

  • Robin Burke
چکیده

1. Introduction Recommender systems provide advice to users about items they might wish to purchase or examine. Recommendations made by such systems can help users navigate through large information spaces of product descriptions, news articles or other items. As on-line information and e-commerce burgeon, recommender systems are an increasingly important tool. A recent survey of recommender systems is found in The most well known type of recommender system is the collaborative-or social-filtering type. These systems aggregate data about customers' purchasing habits or preferences, and make recommendations to other users based on similarity in overall purchasing patterns. For example, in the Ringo music recommender system (Shardanand & Maes, 1995), users express their musical preferences by rating various artists and albums, and get suggestions of groups and recordings that others with similar preferences also liked. Content-based recommender systems are classifier systems derived from machine learning research. For example, the NewsDude news filtering system is a recommender system that suggests news stories the user might like to read (Billsus & Pazzani, 1999). These systems use supervised machine learning to induce a classifier that can discriminate between items likely to be of interest to the user and those likely to be uninteresting. A third type of recommender system is one that uses knowledge about users and products to pursue a knowledge-based approach to generating a recommendation, reasoning about what products meet the user's requirements. The PersonalLogic recom-mender system offers a dialog that effectively walks the user down a discrimination tree of product features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms

Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000